MACHINE LEARNING ANALYSIS IN IMPROVING THE EFFICIENCY OF THE STUDENT ADMISSION DECISION MAKING PROCESS NEW AT PANCA BUDI MEDAN DEVELOPMENT UNIVERSITY
Main Article Content
The decision-making process in admitting new students is a crucial aspect that can influence the quality and efficiency of academic administration in higher education. This research aims to analyze the role of Machine Learning methods, especially Support Vector Machines (SVM), in increasing the efficiency of the decision-making process for new student admissions at the Panca Budi Development University, Medan. The data used in this research includes information from the student admissions process for the odd semester of the 2022/2023 academic year, which includes various variables such as Registration Number, School of Origin, Registration Payment, and others. The data is divided into a training set (70%) and a testing set (30%). The Support Vector Machine (SVM) model that was built was evaluated using metrics such as accuracy, precision, recall, and F1-Score. The research results show that the SVM model achieves an accuracy of 100%, with high precision and recall for both classes. Precision for both classes reached 1.00, while recall for the minority class (class 1) reached 0.91, indicating excellent model performance in classification. The conclusion of this research is that the Support Vector Machine (SVM) model can significantly increase efficiency and accuracy in the decision-making process for new student admissions at the Panca Budi Development University in Medan compared to conventional methods. These findings indicate that the application of Machine Learning methods can provide substantial benefits in the context of academic administration.
Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi. (2019). In JUITA: Jurnal Informatika (Vol. 7, Issue 2, pp. 71–79). https://doi.org/10.12345/juita.2019.7.2.71-79
Ananto, Akbar, A., & Yogi. (2023). Sistem Rekomendasi Program Studi Sarjana Berbasis Machine Learning Untuk Model Klasifikasi Calon Mahasiswa Baru. In Journal of Information Technology and Society (JITS): Vol. Vol. 1 (Issue No. 1, p. 11). https://jits.unmuhbabel.ac.id/
Armansyah, M., & Rakhmat Kurniawan, R. (2021). Model Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Naïve Bayes.
Aryanto, R. R. (2021). Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Pemilihan Program Studi Sarjana.
Dana, R. D., Rohmat, C. L., & Rinaldi, A. R. (2019). Strategi Marketing Penerimaan Mahasiswa Baru Menggunakan Machine Learning dengan Teknik Clustering. Jurnal Informatika Jurnal Pengembangan IT, 4(2–2), 201–204. https://doi.org/10.30591/jpit.v4i2-2.1879
Haditama, M. R. (2023). Analisis dan Pembuatan Dashboard Prediksi Kelulusan Mahasiswa Menggunakan Metode Random Forest, Naïve Bayes Dan Support Vector Machine. In SKRIPSI.
Hartati, T., Nurdiawan, O., & Wiyandi, E. (2021). Analisis dan Penerapan Algoritma K-Means dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari. In Jurnal Sains Teknologi Transportasi Maritim (Vol. 3, Issue 1, p. 1).
Khoeri, I., & Mulyana, D. I. (2021). Implementasi Machine Learning dengan Decision Tree Algoritma C4.5 dalam Penerimaan Karyawan Baru pada PT. Gitareksa Dinamika Jakarta. Jurnal Sosial Dan Teknologi (SOSTECH), 615–623. https://greenvest.co.id/
Penerapan Machine Learning untuk Penentuan Segmentasi Mahasiswa Baru dengan Metode K Modes. (2022). In IC-Tech. http://ejournal.stmik-wp.ac.id
Pratama, A. R., Aryanto, R. R., & Pratama, A. T. M. (2022b). Model Klasifikasi Calon Mahasiswa Baru untuk Sistem Rekomendasi Program Studi Sarjana Berbasis Machine Learning. In Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK): Vol. Vol. 9 (Issue No. 4, pp. 725–734). https://doi.org/10.25126/jtiik.202294311
Ramli, A. R. A. (2024). Penerapan Algoritma Support Vector Machine untuk Penentuan Konsentrasi Mahasiswa Program Studi Manajemen Universitas Muhammadiyah Makassar. In Skripsi.
Roihan, A., Abas Sunarya, P., & Setiani Rafika, A. (2019). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. In IJCIT (Indonesian Journal on Computer and Information Technology) (Vol. 5, Issue 1, pp. 75–82). http://ejournal.bsi.ac.id/ejurnal/index.php/ijcit
Safira, A. J., Cholissodin, I., & Adikara, P. P. (n.d.-a). Prediksi Penerimaan Mahasiswa Baru dengan Menggunakan Metode Extreme Learning Machine (ELM) (Studi Kasus pada Universitas 17 Agustus 1945 Surabaya). In Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (Vols. 6–9, Issue September, pp. 4526–4533). http://j-ptiik.ub.ac.id
Saifudin, A. (2018). Metode Data Mining untuk Seleksi Calon Mahasiswa pada Penerimaan Mahasiswa Baru di Universitas Pamulang. Jurnal Teknologi, 10(1), 25–36. https://doi.org/10.24853/jurtek.10.1.25-36
Segmentasi Mahasiswa dengan ‘Unsupervised’ Algoritma Guna Membangun Strategi Marketing Penerimaan Mahasiswa. (2019). In Jurnal Insand Comtech (Vols. 4–4).
Strategi Promosi Menjaring Mahasiswa Baru Berdasakan Segmentasi Data PPMB Menggunakan K-Means. (2023). Jurnal Riset Informatika Dan Teknologi Informasi (JRITI), Vol. 1(No. 1), 6–10. https://ejurnal.jejaringppm.org/index.php/jriti
Tritanto Ningrum, L. (2022, season-03). Klasterisasi Data Mahasiswa Menggunakan Algoritma K-Means untuk Menentukan Strategi Promosi Penerimaan Mahasiswa Baru. Program Studi Magister Ilmu Komputer; Universitas Budi Luhur.
Wardana, O. Y., Ayub, M., & Widjaja, A. (2023). Perbandingan Akurasi Model Pembelajaran Mesin untuk Prediksi Seleksi Masuk Perguruan Tinggi Negeri. Jurnal Teknik Informatika Dan Sistem Informasi, 9(1). https://doi.org/10.28932/jutisi.v9i1.6126