TIDAL FLOOD MAPPING MODEL IN NORTH MEDAN REGION USING ORDINAL LOGISTIC REGRESSION AND GIS (Geographical Information System)
Main Article Content
Kurniawan Temas Mico Arita
Ahmad Perwira Mulia
Zaid Perdana Nasution
Tidal floods are a regular threat in the coastal area of North Medan, which includes Medan Belawan, Medan Labuhan, and Medan Marelan. This research aims to map the level of vulnerability to tidal flooding using the Ordinal Logistic Regression (RLO) approach combined with Geographic Information Systems (GIS). Nine factors were analyzed: rainfall, drainage density, land use, distance from rivers, distance from the sea, soil type, elevation, slope, and topographic aspects. The analysis showed that rainfall, elevation, and distance from the sea were the most significant factors. The vulnerability map shows that 7.6% of areas are classified as highly vulnerable, 64.74% high, 27.36% medium, and only 0.3% low. The accuracy of the model reached 87.84%. These results provide a solid foundation for spatial planning, disaster mitigation, and coastal adaptation strategies.
Agus, F., Ramadiani, Silalahi, W., Armanda, A., & Kusnandar. (2018). Mapping urban green open space in Bontang city using QGIS and cloud computing. IOP Conference Series: Earth and Environmental Science, 144(1). https://doi.org/10.1088/1755-1315/144/1/012032
Andree Ekadinata; Sonya Dewi; Danan Prasetyo Hadi; Dudy Kurnia Nugroho; Feri Johana. (2008). Sistem Informasi Geografis Untuk Pengelolaan Bentang Lahan Berbasis Sumber Daya Alam (1st ed.). World Agroforestry Centre (ICRAF).
Arief, A. K., & Aris, M. A. (2014). Spatial Modeling of ROB Flood AND Assessment of Potential Loss to Rice Field Agricultural Land Case Sudy of The Coastal Area of Pekalongan District, Centeral Java. Geo Eduksi, III(2), 83–91. https://www.neliti.com/id/publications/56109/pemodelan-spasial-genangan-banjir-rob-dan-penilaian-potensi-kerugian-pada-lahan
Arofah, I. (2018). Analisis Persepsi Biaya Kuliah Perguruan Tinggi dengan Menggunakan Metode Regresi Logistik Ordinal. Jurnal Statistika Dan Aplikasinya, 2(1), 21–29. https://doi.org/10.21009/jsa.02103
Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865. https://doi.org/10.1016/j.heliyon.2020.e05865
Dubey, V., & Katarya, R. (2021). BNDNN: Batch Normalization Based Deep Neural Network for Predicting Flood in Urban Areas. https://doi.org/10.21203/rs.3.rs-1027530/v1
Ezrahayu, P. (2024). Penggunaan Aplikasi QGIS Processing Modeler dalam Menentukan Potensi Bencana Tanah Longsor di Kabupaten Bogor. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 8(1), 41–52. https://doi.org/10.29408/geodika.v8i1.25729
Frost, J. (2021). Spearman’s Correlation Explained. Statistics By Jim. https://statisticsbyjim.com/basics/spearmans-correlation/
Gunawan, K., Ruhiyat, & Purnaba, I. G. P. (2022). Penerapan Analisis Regresi Logistik Ordinal pada Asuransi Kredit Perdagangan Domestik. Jurnal Statistika Dan Aplikasinya, 6(2), 366–380. https://doi.org/10.21009/jsa.06220
Hidayah, E., Indarto, Lee, W. K., Halik, G., & Pradhan, B. (2022). Assessing Coastal Flood Susceptibility in East Java, Indonesia: Comparison of Statistical Bivariate and Machine Learning Techniques. Water (Switzerland), 14(23). https://doi.org/10.3390/w14233869
Jabbar, A., Fariz, T. R., Putri, S. D., Rahmawati, D., Prahmani, Y. S., Putri, R. A., Siregar, Z. G. T., Holeng, V. A., & Chasanah, A. N. (2023). Tidal Flood Susceptibility Mapping and Community Adaptation Assesment in Semarang Utara District. Journal of Environmental and Science Education, 3(1), 56–62. https://doi.org/10.15294/jese.v3i1.64910
James, D. A., Venables, W. N., & Ripley, B. D. (1996). Modern Applied Statistics with S-PLUS. In Technometrics (Vol. 38, Issue 1). https://doi.org/10.2307/1268908
Nanere, M., Tabelessy, W., Leuhery, F., & Tubalawony, J. (2025). Global Trends in SPSS Training for Students : A Step Towards Improved Research Competence. 4(1), 73–80.
Natkaniec, W., & Godyń, I. (2024). Urban Flood Risk Assessment and Mapping Using GIS-DEMATEL Method: Case of the Serafa River Watershed, Poland. Water (Switzerland), 16(18). https://doi.org/10.3390/w16182636
Osman, S. A., & Das, J. (2023). GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Applied Sciences, 5(5). https://doi.org/10.1007/s42452-023-05360-5
Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water (Switzerland), 6(6), 1515–1545. https://doi.org/10.3390/w6061515
Pamungkasih, P. (2023). Penerapan Uji Korelasi Rank Spearman Untuk Mengetahui Hubungan Pengeluaran Rumah Tangga Untuk Makanan Dan Tingkat Kemiskinan Di Nusa Tenggara Timur Selama Pandemi Covid-1. Jurnal Statistika Terapan, 3(2), 1–12.
Papaioannou, G., Vasiliades, L., & Loukas, A. (2015). Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resources Management, 29(2), 399–418. https://doi.org/10.1007/s11269-014-0817-6
Pyanto, F., Mulia, A. P., & Surbakti, M. S. (2021). Pemetaan Banjir Rob Wilayah Medan Utara Menggunakan Regresi Logistik dan GIS. Syntax Literate: Jurnal Ilmiah Indonesia, 6(9). https://doi.org/10.36418/syntax-literate.v6i9.1579
Saputra, N. A., Perwira, A., Tarigan, M., & Nusa, A. B. (2020). Penggunaan Metode AHP dan GIS Untuk Zonasi Daerah Rawan Banjir Rob di Wilayah Medan Utara. In Media Komunikasi Teknik Sipil (Vol. 26, Issue 1).
Simanjuntak, N. R., & Gunarto, D. (2025). Flood Hazard Level Analysis of Kapuas Hulu Sub-watershed Using. 24(4), 1437–1448.
Tu, S., Li, C., & Shepherd, B. E. (2024). Between- and Within-Cluster Spearman Rank Correlations. https://doi.org/10.1002/sim.10326
Yance, Y., Soeryamassoeka, S., & Nurhayati, N. (2024). Analysis of Flood Vulnerability Levels in Landak Regency Using Geographic Information System. Jurnal Teknik Sipil, 24(2), 885. https://doi.org/10.26418/jts.v24i2.78534