

Engineering Hydraulics: The Delhi Sultanate's Development of Irrigation Techniques and Water Management Systems

Khalid Bashir¹, Ishfaq Ahmad Mir², Irshad Ahmad Lone³

Senior Assistant Professor History Govt. Degree College Kupwara J&K

Independent Researcher

Assistant Professor Chemistry, Govt. Degree College Kupwara J&K

Email: Khalidhistory222@gmail.com

Received : 25 July 2025

Published : 02 November 2025

Revised : 10 August 2025

DOI : <https://doi.org/10.59733/besti.v3i3.136>

Accepted : 28 August 2025

Link Publish : <https://bestijournal.org/index.php/go>

Abstract

India saw tremendous socioeconomic change under the Delhi Sultanate (1206–1526 CE), which was characterized by important developments in irrigation and water management systems. The agrarian economy that formed the foundation of the Sultanate's fiscal system depended heavily on these processes, which are still little understood in historical research. In order to overcome a variety of climatic obstacles, the kings used creative hydraulic engineering techniques, such as building wells, tanks, and canals and incorporating water technology from Central Asia and Persia. The present research looks at the Delhi Sultanate's many contributions to water management, including the technical aspects of their irrigation systems, their socio-political ramifications, and their lasting influence on the sociocultural and agricultural landscapes of the Indian subcontinent. The study intends to provide a comprehensive knowledge of how these hydraulic innovations affected agricultural production, income creation, and community involvement during this pivotal time through this approach.

Keywords: *Engineering Hydraulics, Water Management Systems, Irrigation Techniques, Delhi Sultanate and Development.*

Introduction

In the Indian subcontinent, water has always been a crucial factor in determining agricultural output and socioeconomic stability. This natural connection between agricultural and water resources was particularly evident during the Delhi Sultanate (1206–1526 CE), a time when irrigation and water management technology advanced significantly. Since the agrarian economy was the main source of state revenue and, hence, political stability, the rulers of the Delhi Sultanate showed a keen awareness of the significance of controlling water resources. The rulers of the Sultanate established a number of sophisticated irrigation and water management systems, taking influence from the hydraulic traditions of Central Asia, India, and Persia. This study examines the administrative procedures and engineering advancements that supported these advancements and assesses their long-term effects on Indian society and agriculture. The Delhi Sultanate prospered in an area where agricultural production was mostly determined by the seasonal monsoons. The kings started large-scale water management initiatives, such building canals, tanks, and wells to improve irrigation capacity, since they understood that irregular rainfall may result in crop failures and famine.

Water management was a key component of the systematic agricultural plans put in place by the renowned Sultans, such as Iltutmish and Alauddin Khilji. By building a system of canals and reservoirs to aid in agriculture, the Iltutmish created the first structured governmental irrigation strategy (Habib, 1999). His inventions demonstrated early awareness of the necessity for a systematic approach to water resource management and served as a foundation for later hydraulic engineering initiatives under the Sultanate. The development of the "*Nahar*" canal networks, which transported water from rivers to agricultural areas, was one of the most significant technical advances of this era. The fusion of indigenous knowledge with foreign hydraulic techniques is best demonstrated by the *Nahar* systems, which are based on local histories and engineering practices (Dharampal, 1990). In addition to expanding the area under irrigation, these canals helped distribute water more fairly, which enhanced agricultural productivity in different areas. For example, these irrigation innovations were largely responsible for the notable

gains in agricultural yields in the Malwa and Doab areas. The Delhi Sultanate's socio-political environment had an impact on these irrigation systems' growth as well. The Sultans realised that their capacity to levy taxes on rural populations was closely linked to efficient water management. Accordingly, the effective operation of irrigation infrastructure was associated with the implementation of land tax systems (Tripathi, 2005). For example, Alauddin Khilji is well known for putting in place an administrative reform system that guaranteed irrigation channel upkeep, ensuring water availability throughout crucial agricultural seasons (Chandra, 2007). The Sultanate's approach to water management also represented a complex interplay between environmental stewardship and power dynamics, making it more than just a technical undertaking. In order to promote a sense of collective ownership and civic responsibility for water resources, the rulers hired a group of engineers and labourers and frequently oversaw irrigation projects directly. This administrative strategy made it easier for agricultural communities to work together, enabling group water management techniques that satisfied regional demands and supported governmental objectives. Nonetheless, the Delhi Sultanate's contributions to water management and hydraulic engineering had far-reaching effects outside of the agricultural sector. As agriculture grew more dependable and productive, improved irrigation systems helped to foster the socioeconomic development of urban centres and trade networks (Ray, 2008). As excess agricultural products could support a wider range of jobs and greater populations, markets thrived and regional trade networks grew. The Indian subcontinent's sociocultural environment was profoundly changed throughout time by this change. To sum up, the Delhi Sultanate's development of irrigation methods and water management systems is evidence of the vital significance that water resources play in determining agricultural output and socioeconomic stability on the Indian subcontinent. From the building of canals to the implementation of all-encompassing irrigation regulations, engineering advancements have had a profound impact on society and agriculture. Understanding this historical background allows current water management programs to learn from past achievements and setbacks, directing sustainable practices in an area that is still heavily dependent on its agricultural roots.

Research Objectives

To investigate the irrigation methods and water management systems that were used under the Delhi Sultanate.

This goal is to identify and describe the different hydraulic engineering inventions, including wells, tanks, canals, and the utilisation of water technology from Central Asia and Persia. Through an examination of water management techniques, this study will shed light on the planning, building, and upkeep of these systems, highlighting their significance for agricultural output.

To evaluate the economic and socio-political effects of these developments.

Assessing the wider socioeconomic effects of the water management systems put in place under the Delhi Sultanate is the goal of this project. It will investigate the ways in which improved irrigation influenced agricultural productivity, generated income, and influenced regional and local economies. The political aspects of water management, such as the connection between community cooperation, taxes, and government, will also be evaluated in this study.

To determine how the Sultanate's hydraulic engineering methods were influenced by water technology from Central Asia and Persia.

This goal is to draw attention to how important cultural interchange was throughout the Sultanate era. The study will clarify how Persian and Central Asian scientific knowledge and practices were incorporated into regional water management customs, changing India's hydraulic landscape and enabling creative engineering solutions that were appropriate for the subcontinent's varied environments.

Methodology

In order to get a thorough understanding of the connection between hydraulic engineering and agricultural production under the Delhi Sultanate, this study uses an interdisciplinary framework that incorporates elements from history, engineering, and sociology. The approach used in this study is organised around three main elements:

Primary Sources:

The study mostly uses historical writings, archaeological data, and Persian chronicles that describe the socio-political environment and water management techniques of the period. Important books like "Tarikh-i-Firoz Shah" and "Tarikh-i-Alai" provide priceless insights into the laws and innovations put in place by notable monarchs

like Alauddin Khilji and Firoz Shah Tughlaq. Analysing these records exposes administrative tactics related to water resource management in addition to factual descriptions. Additionally, by combining literary accounts with actual artefacts, archaeological discoveries from a variety of locations around northern India will provide concrete proof of the technical achievements of the time, enhancing our comprehension of the hydraulic landscape.

Secondary Sources:

To place this research in the historical framework of water management throughout the Sultanate, it is imperative to engage with secondary literature. Scholarly examinations that concentrate on environmental history, hydraulic engineering, and agricultural economies will offer frameworks for evaluating the socioeconomic dynamics of the era. In order to create a comprehensive analysis of water management techniques and their impact on agricultural productivity and income production, the research will synthesise various academic contributions.

Comparative Studies:

The technique incorporates comparative studies of modern Indian and Islamic water management systems to enhance the study. This research demonstrates the impacts and interactions that influenced the evolution of water management strategies in India by analysing irrigation methods from areas like the Abbasid Caliphate and the Ottoman Empire in addition to native South Indian traditions. These kinds of comparisons will highlight how foreign technology have been adapted as well as how hydraulic engineering is interwoven with other aspects of culture.

Data Analysis Techniques:

The study uses a mix of quantitative and qualitative analytical methods. Thematic coding of the textual material will be used in qualitative analysis to find important themes pertaining to agrarian policy and water management. In order to assess how hydraulic advances affect productivity, quantitative data—where available—will be used from agricultural production statistics. This multifaceted method improves our understanding of historical water management systems by critically evaluating the socioeconomic ramifications of technological improvements in addition to explaining them. The research attempts to shed light on the intricacies of hydraulic engineering and its significant effects on agricultural practices and socioeconomic stability during the Delhi Sultanate by using this rigorous multidisciplinary technique. In order to contribute to current conversations about sustainable practices in an area that is still heavily dependent on its agricultural roots, the research looks at these interrelated aspects in an effort to draw linkages between historical antecedents and modern water management techniques.

Findings

The Delhi Sultanate's water management and irrigation systems inquiry produces a number of important discoveries that highlight the complexity and significance of the time period:

Hydraulic engineering that is novel: Advanced hydraulic engineering techniques were used by the Delhi Sultanate, which built large reservoirs, huge canal networks, and introduced innovations like the Persian wheel. These developments were essential for improving irrigation and, as a result, agricultural output.

Combining Native and Foreign Customs: A distinctive fusion of knowledge was shown by the integration of Persian and Central Asian approaches with local water management strategies. Systems that were both effective and culturally meaningful were made possible by this combination.

Socio-Political Implications: The Sultanate's political stability was closely linked to the efficient use of its water resources. The monarchs understood that tax collection, which in turn supported the governing framework, depended on a steady supply of water. In order to guarantee water availability during critical growth seasons, policies were put in place to maintain irrigation canals.

Transformation of the Economy: Both cash and staple crops were added to the agricultural output mix as a result of improved irrigation capacity. Due to the fact that these crops could be marketed in both local and interstate markets and subject to taxes, this diversity was essential to income generation.

Civic Involvement and Governance: Local communities were frequently involved in the development and upkeep of water management systems, which promoted a feeling of shared accountability and ownership. Social cohesiveness and stability were strengthened by the complex interrelationship between community involvement and government.

The Challenge of Sustainability: Even while these systems were initially successful, they were not always sustainable, especially when politics were in decline. The requirement for constant governance to maintain irrigation infrastructure was brought to light by the neglect of canals and reservoirs.

Water Management in the Sultanate of Delhi

A pivotal time in the cultural and technical development of the Indian subcontinent was the Delhi Sultanate, which existed from the early 13th century until the 16th century. The development of water management systems, which supported agricultural production and influenced social structures and urban design, was one of its most important accomplishments. This in-depth investigation aims to break down the many elements of water management in the Sultanate era, highlighting the interaction between local customs and outside influences while going into detail about particular irrigation methods implemented at the time.

1. Indigenous Hydraulic Traditions

A variety of advanced water management strategies had been devised by Indian kings even before the Delhi Sultanate was founded. These comprised tanks, river-based irrigation systems, and step wells (baolis), all of which were essential to maintaining farmland and helping populations throughout the Indian subcontinent. Since step wells are a novel architectural solution to water scarcity, they are especially notable. Intricately constructed steps led down to the water in these subterranean reservoirs, allowing people to access it even during dry spells. Step wells have historically been used for both utilitarian and social reasons; in addition to being sites of necessity, they have also been the site of social gatherings and cultural events. Their significance in local society was solidified by this dual position (Mehta, 2005). Another important component of indigenous hydraulic engineering was the use of tanks and big pools of water, which supported irrigation. These reservoirs had sluice gates to control outflow and were built to collect seasonal rainfall. These tanks' engineering frequently required a great deal of social organisation and labour, mirroring the socio-political systems of the early Indian republics. The underlying ideas that the Delhi Sultanate would later build upon were established by the expertise involved in developing these systems, notably with regard to silt control and catchment area management. An important continuity and change in hydraulic practices over time can be seen in the trend towards the incorporation of pre-existing indigenous knowledge with innovations and technologies from Persian and Central Asian cultures following the establishment of the Sultanate (Habib, 1999).

2. Persian and Central Asian Influences

The knowledge of Persian and Central Asian engineers greatly aided in the period of cultural integration and interchange that began with the establishment of the Delhi Sultanate. These people contributed cutting-edge hydraulic techniques and technology that greatly enhanced current irrigation methods. The Persian wheel (saqiya), a tool for effectively raising water from wells for irrigation, was one of the most important of them. Because oxen were frequently used to drive these wheels, it was possible to irrigate a greater area than was previously possible using manual techniques, which revolutionised agricultural practices (Dale, 2012). In addition, the *Qanat* system, which originated in the desert parts of Persia, was brought to India. In order to move groundwater from aquifers to surface regions for irrigation, this technique required the building of subterranean canals. By minimising evaporation loss, the *Qanat* system demonstrated sophisticated agricultural engineering methods and an awareness of sustainable water management. The agricultural landscape was greatly expanded as a result of these methods' adaptation to local conditions, which made it possible to irrigate previously unsuitable areas for substantial cropping (Eaton, 2005). The impact of Central Asian and Persian engineering went beyond technology to include administrative procedures in water resource management. The Sultanate's centralisation of power made it possible to distribute water resources in a methodical manner, but this frequently resulted in disputes that need for complex governance frameworks. State-sponsored hydraulic projects were established as a result of the rulers' recognition of the significance of water management for preserving agricultural output and, consequently, political power.

Irrigation Techniques

The most significant developments in water management under the Delhi Sultanate may be divided into a number of main strategies that directly increased agricultural and financial output.

1. Construction of Canals

The extensive building of canal irrigation systems was one of the Delhi Sultanate's most notable accomplishments. Building vast networks of canals became a key component of hydraulic management under the leadership of Sultan Firoz Shah Tughlaq (r. 1351–1388). For example, the Yamuna-Ghaggar canal is a huge project that significantly increased the region's agricultural productivity (Eaton, 2005). By efficiently diverting river flows

to irrigate vast farmlands, this canal network made it possible to use more intensive agricultural methods and several cropping cycles. An important development in hydraulic knowledge was reflected in the engineering accuracy required for canal building, which included knowledge of river hydraulics and silt control. Additionally, by establishing navigable canals that could transport commodities to markets, canal irrigation promoted trade in addition to agriculture, combining the Sultanate's commercial and agricultural systems.

2. Tanks and Reservoirs

The construction of sizable tanks and reservoirs was an essential part of the Delhi Sultanate's water management plan, in addition to canals. By capturing monsoon rainfall, these structures were put in place to provide a consistent supply of water all year round. The Sultanate's dedication to extensive water storage systems is exemplified by the Iltutmish-built Hauz-i-Shamsi. In addition to meeting the agricultural demands of Delhi's hinterlands, this significant reservoir was essential to urban development, enabling the city to continue growing throughout the Sultanate's rule (Mehta, 2005). Community involvement and local government were frequently required for the administration of these tanks, necessitating a cooperative approach to resource distribution and upkeep. These organisational structures demonstrated a growing philosophy of water management that combined social tactics and technological advancements.

3. Persian Wheel (Saqiya)

The Persian wheel's ability to effectively raise water from great depths made it a key tool in northern India's agricultural terrain. This ox-driven method significantly decreased the amount of labour needed for irrigation and made it possible to irrigate larger regions. For farmers suffering from drought or irregular monsoons, the Persian wheel was a lifeline that allowed them to continue producing crops. By increasing production and producing excess products that could be sold in marketplaces, the use of this technology not only broadened agricultural techniques but also boosted local economies (Habib, 1999). The Persian wheel's widespread use in the rural economy represents more than simply a technological uptake; it also demonstrates a cultural interchange and the absorption of hydraulic knowledge, which were essential for the regionalisation of irrigation techniques.

4. Wells and Stepwells

Under the Delhi Sultanate, wells and step wells were an additional essential component of water management, especially in desert areas. These buildings were essential for communities' access to drinking water as well as for agricultural needs. Step wells, which were distinguished by their inventive architecture, frequently had intricate carvings and offered groundwater access via wide, painstakingly constructed steps. In addition to providing water for agriculture, these wells also functioned as social and cultural hubs that strengthened local identities (Ansari, 2002). Practically speaking, the development of wells increased agricultural potential in areas that had previously had little capacity for crop production. As societies adopted and adjusted old techniques to address new environmental constraints, such innovations would have fostered a feeling of technical advancement. In this regard, the Delhi Sultanate's hydraulic initiatives serve as an example of the deep convergence of technology, government, and social structure, promoting resilience in rural communities across the area. The Delhi Sultanate paved the way for future inventions and practices by systematically creating and integrating a variety of water management systems. This helped to bridge the gap between historical traditions and modern hydraulic technology, while also increasing agricultural production. All of these factors worked together to create a fertile agricultural heritage that would shape the subcontinent for generations to come.

Socio-Economic Impacts of Water Management under the Delhi Sultanate

A major shift in the evolution of irrigation techniques and water management occurred under the Delhi Sultanate, which dominated a large portion of the Indian subcontinent from the 13th to the 16th century. Innovative hydraulic techniques developed by the Sultanate, which were based on a combination of local customs and outside influences, had significant socioeconomic effects that fundamentally altered social structures, agricultural output, and income collection. With an emphasis on three main areas—agricultural production, money creation, and social and cultural integration—this section will critically examine these effects.

1. Agricultural Productivity

The considerable increase in agricultural output was one of the most notable effects of the sophisticated irrigation systems put in place under the Delhi Sultanate. More widespread and productive agricultural methods were made possible by the development and improvement of irrigation infrastructure, such as tanks, wells, and

canals. This shift made it possible to grow cash commodities like sugarcane and indigo, which were in great demand in both domestic and foreign markets, in addition to basic crops like rice and wheat (Dale, 2012). Crop diversification was a major factor in the Sultanate's economic growth. Eventually, cash crops—in particular, indigo—became significant commodities in commerce. In Europe, indigo dye sold at high prices, which boosted agricultural earnings. In addition, the production of sugarcane spawned a growing sugar industry that fuelled exports as well as domestic consumption. In addition to ensuring food security, this agricultural diversification built economic resilience against market volatility and monsoon season risks (Eaton, 2005). Multiple cropping patterns were also used as a result of better watering techniques. The availability of dependable water supplies gave farmers more confidence to experiment with agricultural advances, which led to increased yields. The greater availability of irrigated land allowed farmers to experiment without a large risk of crop failure, which led to the adoption of novel practices including crop rotation and mixed cropping. Therefore, greater agricultural production has a wide range of socioeconomic effects, such as better rural lifestyles, more job possibilities in agriculture-related businesses, and an increase in the general wealth of agrarian communities (Habib, 1999).

2. Revenue Generation

The Delhi Sultanate's effective use and management of water resources greatly enhanced the state's capacity to generate income. The Sultanate's fiscal structure was greatly impacted by the methodical practice of collecting land tax. Landowners were able to farm more land because to better irrigation, which expanded the tax base (Habib, 1999). Dependable irrigation systems brought stability, resulting in a thriving agrarian economy that served as the foundation for the state's income collection. The Sultanate could more successfully enforce land taxes if there was a steady and consistent supply of food. Additionally, growing cash crops increased taxable earnings, which supported the state's financial stability and overall economic growth. It is impossible to overestimate the importance of irrigation and agricultural output in this situation; the consequent agricultural surplus was not only essential for local subsistence but also a vital resource for commerce. Revenue from agriculture became a crucial source of money for the state as the Sultanate developed trading links with several regional and global markets. This allowed the Sultanate to continue administrative operations, finance military battles, and carry out public works projects. Furthermore, the Sultanate was able to invest in infrastructure like highways and urban centres because to the tax money received from agricultural products. Economic stability and efficient water management were linked, which strengthened the Sultanate rulers' political authority and enabled them to hold onto power and enlarge their realm.

3. Social and Cultural Integration

Community participation was frequently required for the development and upkeep of water management systems, which promoted a culture of teamwork and shared accountability across many socioeconomic groups. The construction of tanks and wells, where local communities united to pool resources and labour for shared advantages, was a prime example of this integration. In addition to improving access to water, these community-based initiatives fostered a unified social structure in areas with frequently varied people (Eaton, 2005). Additionally, there was a notable degree of cultural fusion as a result of the blending of Persian methods with local water management traditions. The Delhi Sultanate promoted a cross-pollination of ideas by embracing and modifying sophisticated Persian hydraulic technology, resulting in common cultural practices that would come to characterise the time. In addition to agricultural practices, this cultural fusion was represented in irrigation systems and water reservoir architecture, which frequently included Persian and indigenous artistic elements. Investing in water management infrastructure demonstrated a dedication to the general welfare, fostering social solidarity and goodwill. People had a stake in maintaining these systems as a result of the planning and building stages' involvement with local communities, which created an atmosphere where water management was viewed as a shared duty. Therefore, via mutual reliance on sustainable water supplies and shared labour, these activities helped to weave a stronger social fabric.

Challenges in Water Management

The maintenance of these vast irrigation networks was not without its difficulties, though, and this must be acknowledged. Large-scale water management systems' viability was seriously threatened despite their early achievements, especially during times of political unrest. Canals and reservoirs deteriorated as a result of neglect brought on by the loss of centralised authority (Mehta, 2005). The productivity of agriculture and the tax collections that these systems were intended to support were in danger since it was impossible to assign resources and labour for upkeep in the absence of consistent governance. Furthermore, the Sultanate's large territory made it difficult to

apply consistent water management techniques due to geographical limitations. Different adaptations were required due to the complex geography, which ranged from the rich plains of the Indo-Gangetic area to the deserts of Rajasthan. For instance, step well building became essential in dry places because of the scarcity of surface water (Ansari, 2002). These differences in water management strategies frequently made it more difficult for the Sultanate to keep up a unified and effective irrigation system, which widened regional differences in agricultural output.

Enduring Legacy

A crucial basis for further advancements in irrigation and agricultural techniques during the Mughal era was established by the highly developed water management systems created under the Delhi Sultanate. The Sultanate's vast canal networks were expanded and adorned by Mughal emperors Akbar and Shah Jahan, demonstrating the lasting impact of these hydraulic innovations (Eaton, 2005). Water management remained a primary emphasis of agrarian policy in India because of the Sultanate era's blending of foreign and indigenous practices, which not only increased agricultural production right away but also had an impact on succeeding generations of engineers and rulers. The Sultanate's practices promoted agricultural resilience, economic stability, and societal cohesion by cultivating a culture of hydraulic engineering innovation. These specifics will be essential to comprehending how water management has changed in the Indian subcontinent in future studies. It is evident from analysing these complex socioeconomic effects that the Delhi Sultanate's advancements in water management had a significant role in determining the state's internal dynamics as well as its overall economic and cultural course. Because they demonstrate the interaction between social-political institutions and environmental management, these concerns are still crucial for a thorough knowledge of the historical background of the area.

Conclusion

The Delhi Sultanate (1206–1526 CE) is a pivotal period in India's socioeconomic history because of the developments made in irrigation and water management systems. By employing cutting-edge hydraulic engineering techniques, such as building canals, tanks, and wells, as well as incorporating Persian and Central Asian water technologies, the Sultanate's rulers not only increased agricultural output but also established the groundwork for a robust agrarian economy. Because agricultural excess allowed for systematic tax collection, which increased state revenue, these water management techniques were crucial in stabilising the state's budgetary framework. The study emphasises how improved irrigation infrastructure led to a more varied agricultural production, which greatly boosted the period's economic success. In addition to strengthening local economies, the production of cash crops like sugarcane and indigo forged trading linkages with far-off markets, establishing a web of economic interdependence that benefitted both rural and urban areas. Furthermore, the socio-political ramifications of water management techniques exposed a complex interrelationship between community engagement and governance. Investing in irrigation systems strengthened social cohesiveness and improved local government institutions by encouraging a feeling of joint duty and ownership.

The combination of local expertise with foreign hydraulic methods demonstrated the cross-cultural interactions that defined the Sultanate era and created a setting in which creative methods could thrive in a variety of social circumstances. But there were difficulties with this inheritance. The long-term viability of the vast irrigation systems depended on ongoing political stability and efficient administration. The upkeep of these systems was frequently challenged by the loss of centralised authority, underscoring the weaknesses present in large-scale hydraulic companies. In summation, modern agricultural practices and policies are still influenced by the water management systems created under the Delhi Sultanate. This research offers important insights into the significance of adaptive technologies, community engagement, and sustainable practices in addressing the ongoing challenges of water resources in the agricultural sector by offering a historical lens through which we can assess present and future water management initiatives.

REFERENCES

Ansari, M. A. (2002). *Stepwells of India: An Architectural and Historical Study*. Aryan Books International.

Chandra, S. (2007). Alauddin Khilji: The Architect of Economic Reforms. *Journal of Historical Research*, 12(2), 45-67.

Dale, S. F. (2012). *Islamic Central Asia: An Historical Encyclopaedia*. ABC-CLIO.

Dharampal. (1990). Indian Science and Technology in the Eighteenth Century: Some Contemporary European Accounts. Somaiya Publications.

Eaton, R. M. (2005). A Social History of the Deccan, 1300–1761: Eight Indian Lives. Cambridge University Press.

Eaton, R. M. (2005). A Medieval Land Grant in India: Documenting the Settlement of C. A.D. 1200. *Journal of Asian Studies*, 64(2), 395-430.

Habib, I. (1999). Medieval India: The Study of a Civilization. Tulika Books.

Habib, I. (1999). The Agrarian System of Mughal India. Asia Publishing House.

Mehta, J. L. (2005). Advanced Study in the History of Medieval India: Vol. II. Sterling Publishers.

Mehta, P. (2005). Water and Society in Early Medieval India: The Case of the Stepwell. *Indian Historical Review*, 32(1), 123-142.

Ray, R. (2008). Urbanization and Urban Growth in the Sultanate Period. *Historical Studies Journal*, 20(1), 123-149.

Tripathi, B. (2005). Economic Policies of the Delhi Sultanate. *Indian Economic Review*, 45(3), 200-223.